Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway.

نویسنده

  • Anke Buchholz
چکیده

Systemic crop protection products are commonly sprayed onto foliage, whereupon the active substances must penetrate into the leaves in order to become biologically active. Penetration of the plant cuticle is the rate-limiting step. The diffusion of organic non-electrolytes within cuticles is a purely physical process that can be described and analysed in the same way as is done for diffusion in synthetic polymer membranes. Solute mobilities in cuticles vary considerably between plant species. For a given species they decrease with increasing solute size, and this size selectivity holds for all of the plant species investigated so far. Wax extraction from leaf cuticles increases the mobility of solutes tremendously, but size selectivity is not affected. Furthermore, diffusion within plant cuticles is extremely temperature dependent. An analogous increase in solute mobility can be achieved by using accelerators, which enhance the fluidity of the polymer matrix and of the waxes. The effects of temperature and plasticizers on the diffusion of non-electrolytes in wax and the cutin matrix have been used to characterize the nature of the lipophilic pathway. The 'free volume' theory can be used to explain the influence of the size and shape of the solute, and its dependence on temperature. The physico-chemical nature of the diffusion pathway has been shown, by thermodynamic analysis, to be identical for a wide range of solute lipophilicities. This approach also explains the mode of action and the intrinsic activity of plasticizers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of aqueous pores in plant cuticles and permeation of ionic solutes.

Plant cuticles are lipid membranes with separate diffusion paths for lipophilic non-electrolytes and hydrated ionic compounds. Ions are lipid insoluble and require an aqueous pathway across cuticles. Based on experimental data, the aqueous pathway in cuticles has been characterized. Aqueous pores arise by hydration of permanent dipoles and ionic functional groups. They can be localized using io...

متن کامل

Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis.

BACKGROUND The plant cuticle is an extracellular lipophilic biopolymer covering leaf and fruit surfaces. Its main function is the protection of land-living plants from uncontrolled water loss. In the past, the permeability of the cuticle to water and to non-ionic lipophilic molecules (pesticides, herbicides and other xenobiotics) was studied intensively, whereas cuticular penetration of polar i...

متن کامل

Stereoselective Permeation of Tretinoin and Isotretinoin through Enhancer-Treated Rat Skin. II. Effects of Lipophilic Penetration Enhnacers

Many properties of chemicals depend on their stereochemistry. Among these, the effects of stereoisomerism on percutaneous absorption of drugs are not well studied. We have previously shown that permeation of tretinoin and isotretinoin (two geometric isomers) through hydrophilic enhancers-treated rat skin is stereoselective. As, depending on their lipophilicity, penetration enhancers can change ...

متن کامل

Stereoselective Permeation of Tretinoin and Isotretinoin through Enhancer-Treated Rat Skin. II. Effects of Lipophilic Penetration Enhnacers

Many properties of chemicals depend on their stereochemistry. Among these, the effects of stereoisomerism on percutaneous absorption of drugs are not well studied. We have previously shown that permeation of tretinoin and isotretinoin (two geometric isomers) through hydrophilic enhancers-treated rat skin is stereoselective. As, depending on their lipophilicity, penetration enhancers can change ...

متن کامل

Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway.

The water permeability of cuticles isolated from the leaves of 14 plant species was measured at temperatures from 10 degrees C to 55 degrees C at 5 K intervals. Permeances increased slightly with temperatures < or =35 degrees C and drastically in the higher temperature range. The data were analysed according to the Arrhenius formalism which led to distinct plots for the lower and higher tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 11  شماره 

صفحات  -

تاریخ انتشار 2006